Angular Dependency of Hyperspectral Measurements over Wheat Characterized by a Novel UAV Based Goniometer
نویسندگان
چکیده
In this study we present a hyperspectral flying goniometer system, based on a rotary-wing unmanned aerial vehicle (UAV) equipped with a spectrometer mounted on an active gimbal. We show that this approach may be used to collect multiangular hyperspectral data over vegetated environments. The pointing and positioning accuracy are assessed using structure from motion and vary from σ = 1° to 8° in pointing and σ = 0.7 to 0.8 m in positioning. We use a wheat dataset to investigate the influence of angular effects on the NDVI, TCARI and REIP vegetation indices. Angular effects caused significant variations on the indices: NDVI = 0.83–0.95; TCARI = 0.04–0.116; REIP = 729–735 nm. Our analysis highlights the necessity to consider angular effects in optical sensors when observing vegetation. We compare the measurements of the UAV goniometer to the angular modules of the SCOPE radiative transfer model. Model and measurements are in high accordance OPEN ACCESS Remote Sens. 2015, 7 726 (r = 0.88) in the infrared region at angles close to nadir; in contrast the comparison show discrepancies at low tilt angles (r = 0.25). This study demonstrates that the UAV goniometer is a promising approach for the fast and flexible assessment of angular effects.
منابع مشابه
Hyperspectral Reflectance Anisotropy Measurements Using a Pushbroom Spectrometer on an Unmanned Aerial Vehicle - Results for Barley, Winter Wheat, and Potato
Reflectance anisotropy is a signal that contains information on the optical and structural properties of a surface and can be studied by performing multi-angular reflectance measurements that are often done using cumbersome goniometric measurements. In this paper we describe an innovative and fast method where we use a hyperspectral pushbroom spectrometer mounted on a multirotor unmanned aerial...
متن کاملThe Improved Dual-view Field Goniometer System FIGOS
In spectrodirectional Remote Sensing (RS) the Earth's surface reflectance characteristics are studied by means of their angular dimensions. Almost all natural surfaces exhibit an individual anisotropic reflectance behaviour due to the contrast between the optical properties of surface elements and background and the geometric surface properties of the observed scene. The underlying concept, whi...
متن کاملIndividual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UA...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملA Manual Transportable Instrument Platform for Ground-Based Spectro-Directional Observations (ManTIS) and the Resultant Hyperspectral Field Goniometer System
This article presents and technically describes a new field spectro-goniometer system for the ground-based characterization of the surface reflectance anisotropy under natural illumination conditions developed at the Alfred Wegener Institute (AWI). The spectro-goniometer consists of a Manual Transportable Instrument platform for ground-based Spectro-directional observations (ManTIS), and a hype...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015